

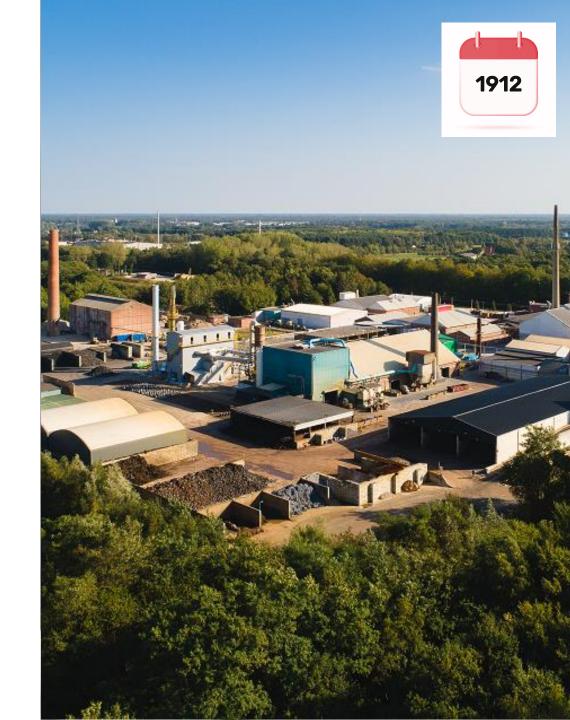
Campine

An evaluation of the sustainable use of halogenated/antimony trioxide flame retardant systems.

Karen Janssens, Campine

AMI Fire Resistance in Plastics

Köln, Dec 2019


About Campine

Metals recycling

- 60.000 tons recycled Pb
- 1.500 tons recycled Sn, Sb, Ag, Au

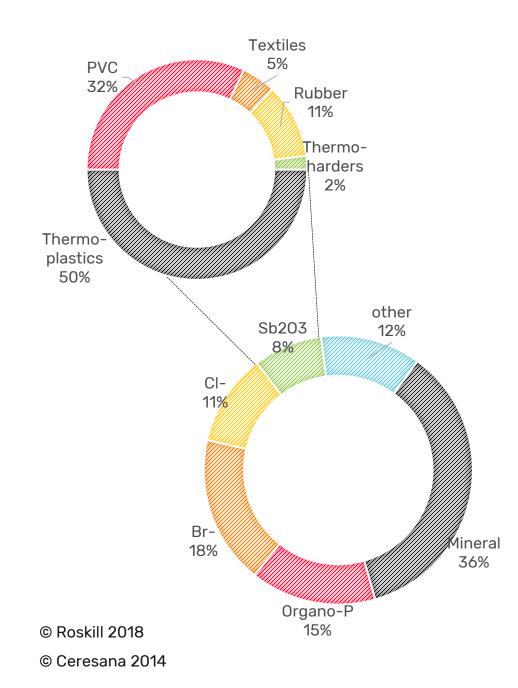
Specialty Chemicals

- 12.000 tons Sb₂O₃
- 6.500 tons FR masterbatches

Use of Flame Retardants in Plastics

Conventional flame retardant formulations are based on halogenated substances.

- effective in low doses
- minimal impact on the physical properties of the polymer
- have a good price / performance ratio.


Flame retardancy of halogens can be boosted by the use of different synergists

Sb₂O₃ is by far the most frequently used synergist

Use of Flame Retardants in Plastics

- 29% of the flame retardants used are halogenated
- Sb2O3 is the most used synergist in combination with halogenated flame retardants
- Most of the Sb₂O₃ is used in thermoplastics

Selection of Flame Retardants

Selection of flame retardants comprise different aspects

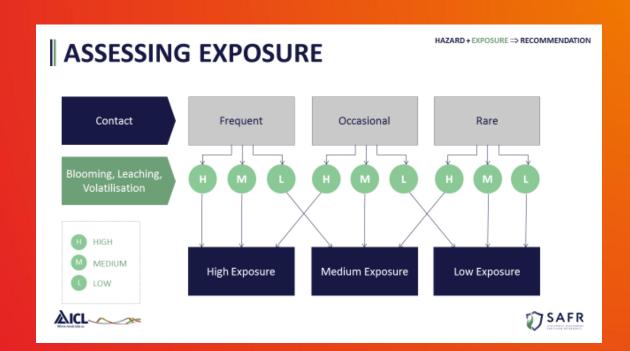
- Flame retardant norm to be reached
- Other properties beside the FR
- Cost of the solution
- Health & Environmental awareness
- Sustainability

In order to make such a selection, appropriate riskmanagement is necessary

SAFR® methodology

ICL, a leading producer of brominated and organophosphorus-based Flame Retardants (FRs)

- SAFR® = Systematic Assessment of Flame Retardants
- Sb₂O₃ is not part of the SAFR® evaluation


Our study

The aim of our study is to make a similar assessment of the use of Sb₂O₃ in different halogenated flame retardant formulations

SAFR®

| HAZARD + EXPOSURE ⇒ **RECOMMENDATION**

HAZARD EXPOSURE	LOW	MEDIUM	HIGH	UNACCEPTABLE
LOW POTENTIAL	RECOMMENDED	RECOMMENDED	ACCEPTABLE	out
MEDIUM POTENTIAL	RECOMMENDED	ACCEPTABLE	NOT RECOMMENDED	TO BE PHASED OUT
HIGH POTENTIAL	ACCEPTABLE	NOT RECOMMENDED	NOT RECOMMENDED	X ^O

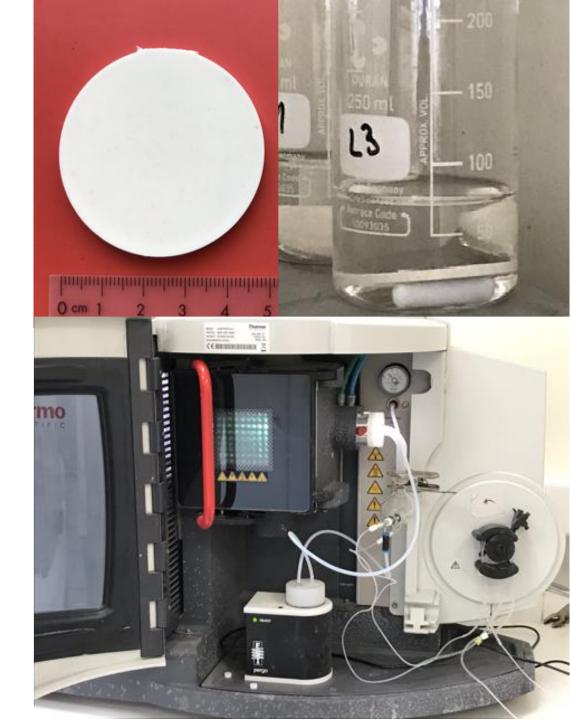
BLOOMING

- Preparation of plastic samples according to known formulation
- Ageing of samples at 70°C for 35 days
- Sweeping of samples
- Analysis of filters for bromine

Blooming levels µgBr⁻/cm²: Low/No: Br⁻ ≤ 1, Medium: 1< Br⁻ ≤10, High: Br⁻ > 10

Sb₂O₃ Hazards

- GHS Classification (29 CFR 1910.1200)
 - H351 pot.carc class 2
 - H373 STOT RE lung (voluntary listing)
- GHS Label Elements



Sb₂O₃ has no environmental classification

Blooming of Sb₂O₃

- Preparation of plastic samples
- Ageing at 70°C
- Samples are immersed and stirred in Ultrapure H2O @ 38°C for 1h
- Addition of HBr
- Solution is analysed with ICP-0ES

Measurements Sb₂O₃ (µg/cm²⁾ at 0, 14 and 30 days

Formulations

Polymer	Flame retardant*	Synergist
LDPE	DBDPE	Sb2O3
LDPE	DBDPE	
PPco	BDDP of TBBA	Sb2O3
PPco	BDDP of TBBA	
HIPS	BDDP of TBBA	Sb203
HIPS	BDDP of TBBA	
PA6	Br Polystyrene	Sb2O3
PA6	Br Polystyrene	
PBT	Br Polyacrylate	Sb ₂ O ₃
PBT	Br Polyacrylate	

*Flame retarda	nt	ICL Productname
DBDPE	Decabromodiphenyl ethane	FR1410
BDDP of TBBA	Tetrabromobisphenol A of dibromopropylether	FR720
Br Polystyrene	Brominated Polystyrene	FR803
Br Polyacrylate	Brominated Polyacrylate	FR1025

Blooming of Br

Results are kindly generated by ICL	Blooming levels µBr/	/cm²: no/low ≤ 1, 1 < medio	um ≤ 10, high > 10
Formulation	to µg Br/cm²	14 days µg Br/cm²	35 days µg Br∕cm²
LDPE/DBDPE/Sb2O3	No/Low	No/Low	No/Low
LDPE/DBDPE	No/Low	No/Low	No/Low
PPco/BDDP of TBBA /Sb ₂ O ₃	No/Low	No/Low	Medium
PPco/BDDP of TBBA	No/Low	No/Low	Medium
HIPS/BDDP of TBBA /Sb2O3	No/Low	No/Low	No/Low
HIPS/BDDP of TBBA	No/Low	No/Low	No/Low
PA6/Br Polystrene/Sb2O3	No/Low	No/Low	No/Low
PA6/Br Polystyrene	No/Low	No/Low	No/Low
PBT/Br Polyacrylate/Sb2O3	No/Low	No/Low	No/Low
PBT/Br Polyacrylate	No/Low	No/Low	No/Low

Conclusions Br Blooming

- Presence of Sb₂O₃ has no effect on the Br blooming out of the investigated samples
- No/Low blooming for
 - HIPS/FR720/Sb₂O₃
 - PA6/FR803/Sb203
 - PBT/FR1025/Sb₂O₃
 - LDPE/FR 1410/Sb₂O₃
- Medium blooming for
 - PPco/FR 720/Sb₂O₃ (despite low addition levels)

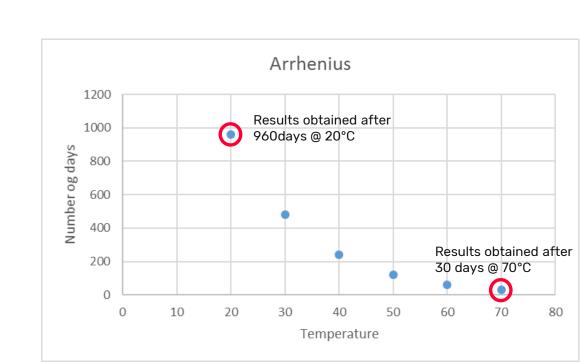
Blooming of Sb₂O₃

Formulation	t ₀ µg Sb2O3/cm ²	14 days µg Sb203/cm²	35 days µg Sb2O3/cm²
LDPE/DBDPE/Sb2O3	< 2	< 2	<1
LDPE/DBDPE	<1	<1	<1
PPco/BDDP of TBBA /Sb2O3	< 1	< 1	< 1
PPco/BDDP of TBBA	< 1	< 1	< 1
HIPS/BDDP of TBBA /Sb2O3	<1	<1	<1
HIPS/BDDP of TBBA	<1	<1	<1
PA6/Br Polystrene/Sb2O3	< 2	< 2,5	< 2
PA6/Br Polystyrene	<1	<1	<1
PBT/Br Polyacrylate/Sb2O3	<1	<1	<1
PBT/Br Polyacrylate	< 1	<1	< 1

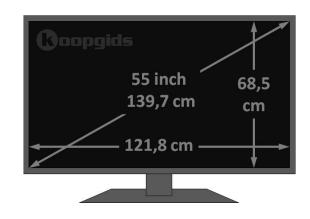
Conclusions Sb₂O₃

- Max Sb2O₃ blooming for all tested samples is < 2,5 μg/cm²
- Blooming < 1µg/cm² of Sb2O3 out of
 - PPco/FR720/Sb₂O₃
 - HIPS/FR720/Sb₂O₃
 - PBT/FR1025/Sb₂O₃
- Blooming < 2,5µg/cm² of Sb₂O₃ out of
 - LDPE/FR1410/Sb₂O₃
 - PA6/FR803/Sb₂O₃
 - No extra blooming after ageing

Sb₂O₃ blooming In perspective



The dependence of migration processes in polymers on the temperature are described by Arrhenius.


Results obtained after 30 days @ 70°C

Results obtained after 960 days (2,6 years) @ 20°C

Sb₂O₃ Blooming In perspective

Regulation on dust

- Germany OEL/TLV: 0,005 mg/m3 respirable fraction
- Rest of Europe OEL/TLV: 0,5mg/m3 inhalable fraction

The bloomed amount Sb₂O₃ out of the back panel of a 55 inch television is 500 / 50.000 times smaller

- assumed room size: 10m x 6m x 3m
- over 2,6 years

Conclusions

- Real life formulations have been used to determine potential risk of halogenated FR and Sb₂O₃ exposure in different applications
- Presence of Sb₂O₃ has no effect on the Br blooming
- Sb2O3 blooming after 30days for all tested samples is < 2.5 μg/cm²
 - Which is far below any workplace or product limits in the EU and beyond

Next steps

Product stewardship

- Continuous responsibility for all producers
- Promote safe use of Sb₂O₃ (small bags, wetted, masterbatches)

Convey the message to ROHS, REACH, ...

Thank you

Rien Repriels, Campine Gitte Snoeys, Campine

Marc Leifer, ICL-IP Smadar Admon, ICL-IP

